

Carbon Capture and Utilisation

Towards a CO₂ recycling industry in Europe

Dr Célia Sapart Director Communications and Climate Science celia.sapart@co2value.eu

CARBON CAPTURE AND UTILISATION

Definitions, Impact and Opportunities

Climate Change Mitigation: It is time for action

EU CLIMATE TARGETS

- At least 55% GHG emission reductions by 2030 in comparison to 1990 levels.
- Net-zero emissions (emissions = sink capacities) by 2050.
- Negative emissions are needed regardless of the emission scenario. Not possible to mitigate climate change well below 2 °C without carbon removal.

3

CCU opportunities towards a more sustainable industry?

CHEMICALS

Alternative carbon feedstock

CCU represents a key opportunity to "defossilise" the chemical industry and decrease its carbon footprint.

Production of high value chemicals and polymers based on CO_2 as a feedstock.

Most of the existing chemical building blocks could be produced using CO_2 .

BUILDING MATERIALS

Storing CO₂ in materials

The storage of CO_2 via mineralisation to produce building material is a crucial opportunities to decrease the carbon footprint of this sector.

 CO_2 emissions from hard to abate sectors can be stored permanently in materials.

These materials can substitute carbonintensive products such as cement materials.

ENERGY

"Defosilise" heavy duty transport

Renewable CO₂-based fuels have an energy density adapted for heavy transports and do not require changes in infrastructures and vehicles.

Storage of Renewable Electricity (RE)

Via Power-to-X, CCU can support the storage and transport of RE and thus be a non-fossil and renewable alternative for processes or locations that cannot directly use RE.

V	Numbers and Facts	
	CCU technologies have the potential to utilize up to 8 Gt of CO₂ per year by 2050 (Sources: GCI, 2016, Hepburn et al., 2019)	
6	The estimated potential for the scale-up of CO ₂ utilization in e-fuels varies from 1 to 4.2 Gt CO ₂ y (Sources: Hepburn et al., 2019, Farfan et al., 2019, RAM et al., 2020)	r–1
(F	Life-cycle analysis demonstrate that both point source and DAC to fuel pathways can provide of benefit over conventional diesel fuel if a low carbon source of electricity is used (<i>Sources: Daggash et al., 2018, CONCAWE, 2019, Liu et al., 2020</i>)	limate
Ŵ	CCU has the technical potential to decouple chemical production from fossil resources, reducing a GHG emissions by up to 3.5 Gt CO₂-eq in 2030 (Source: Katelön et al., 2019)	annual
	All considered CCU technologies for mineralization could reduce climate impacts over the life cycle based on the current state-of-the-art and today's energy mix. Up to 1 Gt per year cement market could be substituted by mineralization products (Sources: Ostavari et al., 2020, Di Maria et al., 2020, Hills et al., 2020)	entire of the
		11

State of the Art and Perspectives in Europe

7

Examples of high TRL CCU projects

Forecasted production of CO₂-based fuels and chemicals in near-term:

Project	Country	Route	Production of CO ₂ based products
Norsk-efuel	Norway	DAC to jet-fuel	82 000 tons of jet-fuel/year
Carbon Recycling International	Iceland	CO ₂ to methanol	4 000 tons of methanol/year
Jupiter 1000	France	CO_2 flue gas to CH_4	25 Nm ³ /h of methane = 160 000 tons of methane/year
North CCUhub	Belgium	CO ₂ to methanol	44 000 tons of methanol/year
Mo-Industrial e-fuel	Norway	CO ₂ to methanol	80 000 tons of methanol/year
C2Fuel	EU	CO_2 to formic acid	2.4 Million tons of formic acid/year
Audi e-gas plant	Germany	CO ₂ to methane	1 000 tons of methane/year

Support Research, Innovation & Deployment

CCU in Fit-for-55 Package

The Fit for 55 Package was launched on 14 July 2021 by the European Commission. Among the different policies proposed, a number of them* will directly impact how CCU can be further deployed and incentivised across the EU:

Policy instrument	Impact on CCU
EU Emissions Trading System (EU ETS) revision	Recognises that CO_2 which is chemically and permanently bound in a product – as in CO_2 mineralisation – is excluded from the obligation to surrender emission allowances;
	Announces specific provisions to avoid double-counting of emissions released by the use of RFNBOs that were produced from CO_2 emitted under activities covered by ETS.
Renewable Energy Directive (REDII) revision	The impact of RFNBOs is considered only if they reach 70% of emission reduction.
	Requires that at least 2.6% of the energy supplied to transport by 2030 is covered by RFNBOs;
	Requires that 50% of the use of hydrogen in the industry is covered by RFNBOs.
ReFuelEU Aviation	Sets binding targets per volume shares for RFNBOs: minimum 0.7% of RFNBOs by 2030; minimum 8% by 2040 and minimum 28% by 2050.
Fuel EU Maritime	Sets binding GHG reduction targets for ships: 2% in 2025; 6% in 2030; 26% in 2040 and 75% in 2050 by including RFNBOs to reach these targets.
Energy Taxation Directive revision	Sets minimum taxation rates of zero for a transitional period of 10 years (2023-2033) for RFNBOs and other sustainable & low carbon fuels for specific types of air and
	EU Emissions Trading System (EU ETS) revision Renewable Energy Directive (REDII) revision ReFuelEU Aviation Fuel EU Maritime Energy Taxation Directive revision

